远远超出了学习自然语言的远程相互作用,变形金刚正成为许多愿景任务的遗弃标准,具有其力量和爬钢丝。特别是在图像和文本之间的跨模型任务中,向量量化变化自动码器(VQ-VAE)被广泛用于使原始RGB图像成为一系列特征向量。为了更好地利用图像和文本之间的相关性,我们提出了一种新颖的架构,该架构包括用于文本到图像和图像到文本的特征增强的变形Autiachoder(Augvae)和双向自动回归变压器(Biart)一代。我们的Augvae在ImageNet1K验证集上显示了最先进的重建性能,以及野外未经看出图像的鲁棒性。与其他模型不同,BIART可以将图像(或文本)区分为条件参考和生成目标。 L-VERSE可以直接用于图像到文本或文本到图像生成任务,而无需任何FineTuning或额外的对象检测框架。在定量和定性实验中,L-VESERS在MS-Coco字幕上的图像到文本和文本到图像生成中,对先前的方法进行了令人印象深刻的结果。我们还评估了L-Verse架构对概念标题的可扩展性,并呈现了一般域的双向视觉语言表示学习的初始结果。代码可用:https://github.com/tgisaturday/l-verse
translated by 谷歌翻译
近年来,已经提出了神经网络的方法作为一种方法,作为一种从音乐中的表示的方法,但它们不是人类可读性,并且几乎不可分析的人是人类的。为了解决这个问题,我们提出了一种新的方法,通过矢量量化变分自动编码器(VQ-VAE)来学习音乐的源自令人难以展示的陈述。我们训练我们的VQ-VAE以将输入混合物编码为一个整数的张量离散的百日利斯空间,并设计它们具有分解结构,使人类以源自感知方式达到人类潜伏的载体。本文还表明,我们可以通过在离散空间中估计潜伏向量来生成贝塞斯。
translated by 谷歌翻译
由于它们的灵活性,适用性和扩展性,条件源分离引起了重要的关注。它们的性能通常不如现有的方法,例如单源分离模型。然而,最近提出的方法称为Lasaft-Net的方法表明,条件模型可以对现有的单源分离模型表现出相当的性能。本文提出了光明纸网,轻量级的Lasaft-net。作为基线,它提供了足够的SDR性能,以便在ISMIR 2021的音乐解映射挑战期间进行比较。本文还通过用TFC-TDF块替换编码器中的光纤块来增强现有的光线截网。我们的增强型光线牵线纸净额优于前一个参数。
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
Cellular automata (CA) captivate researchers due to teh emergent, complex individualized behavior that simple global rules of interaction enact. Recent advances in the field have combined CA with convolutional neural networks to achieve self-regenerating images. This new branch of CA is called neural cellular automata [1]. The goal of this project is to use the idea of idea of neural cellular automata to grow prediction machines. We place many different convolutional neural networks in a grid. Each conv net cell outputs a prediction of what the next state will be, and minimizes predictive error. Cells received their neighbors' colors and fitnesses as input. Each cell's fitness score described how accurate its predictions were. Cells could also move to explore their environment and some stochasticity was applied to movement.
translated by 谷歌翻译
There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
In this paper, we learn a diffusion model to generate 3D data on a scene-scale. Specifically, our model crafts a 3D scene consisting of multiple objects, while recent diffusion research has focused on a single object. To realize our goal, we represent a scene with discrete class labels, i.e., categorical distribution, to assign multiple objects into semantic categories. Thus, we extend discrete diffusion models to learn scene-scale categorical distributions. In addition, we validate that a latent diffusion model can reduce computation costs for training and deploying. To the best of our knowledge, our work is the first to apply discrete and latent diffusion for 3D categorical data on a scene-scale. We further propose to perform semantic scene completion (SSC) by learning a conditional distribution using our diffusion model, where the condition is a partial observation in a sparse point cloud. In experiments, we empirically show that our diffusion models not only generate reasonable scenes, but also perform the scene completion task better than a discriminative model. Our code and models are available at https://github.com/zoomin-lee/scene-scale-diffusion
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
We propose a new causal inference framework to learn causal effects from multiple, decentralized data sources in a federated setting. We introduce an adaptive transfer algorithm that learns the similarities among the data sources by utilizing Random Fourier Features to disentangle the loss function into multiple components, each of which is associated with a data source. The data sources may have different distributions; the causal effects are independently and systematically incorporated. The proposed method estimates the similarities among the sources through transfer coefficients, and hence requiring no prior information about the similarity measures. The heterogeneous causal effects can be estimated with no sharing of the raw training data among the sources, thus minimizing the risk of privacy leak. We also provide minimax lower bounds to assess the quality of the parameters learned from the disparate sources. The proposed method is empirically shown to outperform the baselines on decentralized data sources with dissimilar distributions.
translated by 谷歌翻译